Multiple-Instance Learning Approach via Bayesian Extreme Learning Machine
Multiple-instance learning (MIL) can solve supervised learning tasks, where only a bag of multiple instances is labeled, instead of a single instance. It is considerably important to develop effective and efficient MIL algorithms, because real-world datasets usually contain large instances. Known fo...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9050729/ |