Mirroring Vector Space Embedding for New Words
Most embedding models used in natural language processing require retraining of the entire model to obtain the embedding value of a new word. In the current system, as retraining is repeated, the amount of data used for learning gradually increases. It is thus very inefficient to retrain the entire...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9481109/ |