Multiple positive solutions for equations involving critical Sobolev exponent in R^N
$$ -{ m div }(|abla u|^{m-2}abla u) = lambda h u^q+u^{m^*-1},quad{ m in}quad R^N,. $$ Using the Ekeland Variational Principle and the Mountain Pass Theorem, we show the existence of $lambda ^*>0$ such that there are at least two non-negative solutions for each $lambda$ in $(0,lambda ^*)$.
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
1997-08-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/1997/13/abstr.html |