Capturing deprived areas using unsupervised machine learning and open data: a case study in São Paulo, Brazil
ABSTRACTManaging the rapid growth of deprived areas (commonly known as slums, informal settlements, etc.) in cities of Low- to Middle-Income Countries (LMICs) demands detailed and consistent information that is often unavailable. Recent Earth Observation (EO) mapping approaches with supervised class...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2023-12-01
|
Series: | European Journal of Remote Sensing |
Subjects: | |
Online Access: | https://www.tandfonline.com/doi/10.1080/22797254.2023.2214690 |