Parameter selection algorithm of DBSCAN based on K-means two classification algorithm
Clustering algorithm is one of the most important algorithms in unsupervised learning. For density-based spatial clustering of applications with noise (DBSCAN) density clustering algorithm, the selection of neighborhood radius and minimum number is the key to get the best clustering results. Aiming...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-10-01
|
Series: | The Journal of Engineering |
Subjects: | |
Online Access: | https://digital-library.theiet.org/content/journals/10.1049/joe.2018.9082 |