TRPV1 Activation Promotes β-arrestin2 Interaction with the Ribosomal Biogenesis Machinery in the Nucleolus: Implications for p53 Regulation and Neurite Outgrowth
Transient receptor potential vanilloids (TRPV1) are non-selective cation channels that sense and transduce inflammatory pain signals. We previously reported that activation of TRPV1 induced the translocation of β-arrestin2 (ARRB2) from the cytoplasm to the nucleus, raising questions about the functi...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-02-01
|
Series: | International Journal of Molecular Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/1422-0067/22/5/2280 |
Summary: | Transient receptor potential vanilloids (TRPV1) are non-selective cation channels that sense and transduce inflammatory pain signals. We previously reported that activation of TRPV1 induced the translocation of β-arrestin2 (ARRB2) from the cytoplasm to the nucleus, raising questions about the functional role of ARRB2 in the nucleus. Here, we determined the ARRB2 nuclear signalosome by conducting a quantitative proteomic analysis of the nucleus-sequestered L395Q ARRB2 mutant, compared to the cytosolic wild-type ARRB2 (WT ARRB2), in a heterologous expression system. We identified clusters of proteins that localize to the nucleolus and are involved in ribosomal biogenesis. Accordingly, L395Q ARRB2 or WT ARRB2 after capsaicin treatment were found to co-localize and interact with the nucleolar marker nucleophosmin (NPM1), treacle protein (TCOF1) and RNA polymerase I (POL I). We further investigated the role of nuclear ARRB2 signaling in regulating neuroplasticity. Using neuroblastoma (neuro2a) cells and dorsal root ganglia (DRG) neurons, we found that L395Q ARRB2 mutant increased POL I activity, inhibited the tumor suppressorp53 (p53) level and caused a decrease in the outgrowth of neurites. Together, our results suggest that the activation of TRPV1 promotes the ARRB2-mediated regulation of ribosomal biogenesis in the nucleolus. The ARRB2-TCOF1-p53 checkpoint signaling pathway might be involved in regulating neurite outgrowth associated with pathological pain conditions. |
---|---|
ISSN: | 1661-6596 1422-0067 |