Summary: | Aims: We investigated the acute effects of nicotine on myocardial infarct size, no reflow, hemodynamics and cardiac function in an acute myocardial ischemia and reperfusion infarction rat model. Main methods: Female Sprague-Dawley rats (n = 23/group) received an intravenous loading dose of nicotine at 2.0 μg/kg/min or saline control for 30 min before starting coronary artery occlusion, then followed by a maintenance dose 0.35 μg/kg/min of nicotine to the end of 30 min occlusion and 3 h reperfusion. Key findings: At baseline, there was no difference in systolic blood pressure (BP in mmHg) (nicotine, 69.0 ± 2.7; control, 69.3 ± 4.4; p = NS) or diastolic BP (nicotine, 45.7 ± 3.2; control, 48.2 ± 4.2; p = NS) between groups. Nicotine administration initially increased systolic BP (nicotine, 97.0 ± 8.6; control, 69.2 ± 3.3, p < 0.0001) and diastolic BP (nicotine, 65.6 ± 6.4; control, 47.4 ± 3.1, p = 0.0003) at 10 min after starting injection of the loading dose; BP dropped to control levels in both groups at 30 min. During occlusion and reperfusion, the BP and heart rate were not altered by nicotine. Nicotine significantly increased myocardial infarct size as a percentage of the ischemic risk zone compared to the controls (nicotine, 54.9 ± 1.9; control, 48.6 ± 2.7, p < 0.05), but nicotine did not affect the no-reflow size and heart function. Significance: While acute nicotine only transiently elevated blood pressure, it did not affect hemodynamic parameters during coronary artery occlusion. Nicotine increased myocardial infarct size, suggesting that the increase in infarct size was not simply due to an increase in oxygen demand due to altered afterload, heart rate, or contractility, but may have been due to a more direct effect on the myocardium.
|