Infrared Predictions Are a Valuable Alternative to Actual Measures of Dry-Cured Ham Weight Loss in the Training of Genome-Enabled Prediction Models

Selection to reduce ham weight losses during dry-curing (WL) requires individual traceability of hams throughout dry-curing, with high phenotyping costs and long generation intervals. Infrared spectroscopy enables cost-effective, high-throughput phenotyping for WL 24 h after slaughter. Direct genomi...

Full description

Bibliographic Details
Main Authors: Valentina Bonfatti, Sara Faggion, Elena Boschi, Paolo Carnier
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Animals
Subjects:
Online Access:https://www.mdpi.com/2076-2615/12/7/814
Description
Summary:Selection to reduce ham weight losses during dry-curing (WL) requires individual traceability of hams throughout dry-curing, with high phenotyping costs and long generation intervals. Infrared spectroscopy enables cost-effective, high-throughput phenotyping for WL 24 h after slaughter. Direct genomic values (DGV) of crossbred pigs and their purebred sires were estimated, for observed (OB) and infrared-predicted WL (IR), through models developed from 640 and 956 crossbred pigs, respectively. Five Bayesian models and two pseudo-phenotypes (estimated breeding value, EBV, and adjusted phenotype) were tested in random cross-validation and leave-one-family-out validation. The use of EBV as pseudo-phenotypes resulted in the highest accuracies. Accuracies in leave-one-family-out validation were much lower than those obtained in random cross-validation but still satisfactory and very similar for both traits. For sires in the leave-one-family-out validation scenario, the correlation between the DGV for IR and EBV for OB was slightly lower (0.32) than the correlation between the DGV for OB and EBV for OB (0.38). While genomic prediction of OB and IR can be equally suggested to be incorporated in future selection programs aiming at reducing WL, the use of IR enables an early, cost-effective phenotyping, favoring the construction of larger reference populations, with accuracies comparable to those achievable using OB phenotype.
ISSN:2076-2615