Autour de la conjecture de Tate enti\`ere pour certains produits de dimension $3$ sur un corps fini
Let $X$ be the product of a surface satisfying $b_2=\rho$ and of a curve over a finite field. We study a strong form of the integral Tate conjecture for $1$-cycles on $X$. We generalize and give unconditional proofs of several results of our previous paper with J.-L. Colliot-Th\'el\`ene.
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Association Epiga
2022-06-01
|
Series: | Épijournal de Géométrie Algébrique |
Subjects: | |
Online Access: | https://epiga.episciences.org/8550/pdf |