Autour de la conjecture de Tate enti\`ere pour certains produits de dimension $3$ sur un corps fini

Let $X$ be the product of a surface satisfying $b_2=\rho$ and of a curve over a finite field. We study a strong form of the integral Tate conjecture for $1$-cycles on $X$. We generalize and give unconditional proofs of several results of our previous paper with J.-L. Colliot-Th\'el\`ene.

Bibliographic Details
Main Author: Federico Scavia
Format: Article
Language:English
Published: Association Epiga 2022-06-01
Series:Épijournal de Géométrie Algébrique
Subjects:
Online Access:https://epiga.episciences.org/8550/pdf
_version_ 1797248744758968320
author Federico Scavia
author_facet Federico Scavia
author_sort Federico Scavia
collection DOAJ
description Let $X$ be the product of a surface satisfying $b_2=\rho$ and of a curve over a finite field. We study a strong form of the integral Tate conjecture for $1$-cycles on $X$. We generalize and give unconditional proofs of several results of our previous paper with J.-L. Colliot-Th\'el\`ene.
first_indexed 2024-04-24T20:19:28Z
format Article
id doaj.art-5ed0439f6d3a42a8aa227a41d7f97310
institution Directory Open Access Journal
issn 2491-6765
language English
last_indexed 2024-04-24T20:19:28Z
publishDate 2022-06-01
publisher Association Epiga
record_format Article
series Épijournal de Géométrie Algébrique
spelling doaj.art-5ed0439f6d3a42a8aa227a41d7f973102024-03-22T09:11:16ZengAssociation EpigaÉpijournal de Géométrie Algébrique2491-67652022-06-01Volume 610.46298/epiga.2022.volume6.85508550Autour de la conjecture de Tate enti\`ere pour certains produits de dimension $3$ sur un corps finiFederico ScaviaLet $X$ be the product of a surface satisfying $b_2=\rho$ and of a curve over a finite field. We study a strong form of the integral Tate conjecture for $1$-cycles on $X$. We generalize and give unconditional proofs of several results of our previous paper with J.-L. Colliot-Th\'el\`ene.https://epiga.episciences.org/8550/pdfmathematics - algebraic geometrymathematics - number theory14c25 (primary) 14c35, 14g15 (secondary)
spellingShingle Federico Scavia
Autour de la conjecture de Tate enti\`ere pour certains produits de dimension $3$ sur un corps fini
Épijournal de Géométrie Algébrique
mathematics - algebraic geometry
mathematics - number theory
14c25 (primary) 14c35, 14g15 (secondary)
title Autour de la conjecture de Tate enti\`ere pour certains produits de dimension $3$ sur un corps fini
title_full Autour de la conjecture de Tate enti\`ere pour certains produits de dimension $3$ sur un corps fini
title_fullStr Autour de la conjecture de Tate enti\`ere pour certains produits de dimension $3$ sur un corps fini
title_full_unstemmed Autour de la conjecture de Tate enti\`ere pour certains produits de dimension $3$ sur un corps fini
title_short Autour de la conjecture de Tate enti\`ere pour certains produits de dimension $3$ sur un corps fini
title_sort autour de la conjecture de tate enti ere pour certains produits de dimension 3 sur un corps fini
topic mathematics - algebraic geometry
mathematics - number theory
14c25 (primary) 14c35, 14g15 (secondary)
url https://epiga.episciences.org/8550/pdf
work_keys_str_mv AT federicoscavia autourdelaconjecturedetateentierepourcertainsproduitsdedimension3suruncorpsfini