Autour de la conjecture de Tate enti\`ere pour certains produits de dimension $3$ sur un corps fini
Let $X$ be the product of a surface satisfying $b_2=\rho$ and of a curve over a finite field. We study a strong form of the integral Tate conjecture for $1$-cycles on $X$. We generalize and give unconditional proofs of several results of our previous paper with J.-L. Colliot-Th\'el\`ene.
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Association Epiga
2022-06-01
|
Series: | Épijournal de Géométrie Algébrique |
Subjects: | |
Online Access: | https://epiga.episciences.org/8550/pdf |
_version_ | 1797248744758968320 |
---|---|
author | Federico Scavia |
author_facet | Federico Scavia |
author_sort | Federico Scavia |
collection | DOAJ |
description | Let $X$ be the product of a surface satisfying $b_2=\rho$ and of a curve over
a finite field. We study a strong form of the integral Tate conjecture for
$1$-cycles on $X$. We generalize and give unconditional proofs of several
results of our previous paper with J.-L. Colliot-Th\'el\`ene. |
first_indexed | 2024-04-24T20:19:28Z |
format | Article |
id | doaj.art-5ed0439f6d3a42a8aa227a41d7f97310 |
institution | Directory Open Access Journal |
issn | 2491-6765 |
language | English |
last_indexed | 2024-04-24T20:19:28Z |
publishDate | 2022-06-01 |
publisher | Association Epiga |
record_format | Article |
series | Épijournal de Géométrie Algébrique |
spelling | doaj.art-5ed0439f6d3a42a8aa227a41d7f973102024-03-22T09:11:16ZengAssociation EpigaÉpijournal de Géométrie Algébrique2491-67652022-06-01Volume 610.46298/epiga.2022.volume6.85508550Autour de la conjecture de Tate enti\`ere pour certains produits de dimension $3$ sur un corps finiFederico ScaviaLet $X$ be the product of a surface satisfying $b_2=\rho$ and of a curve over a finite field. We study a strong form of the integral Tate conjecture for $1$-cycles on $X$. We generalize and give unconditional proofs of several results of our previous paper with J.-L. Colliot-Th\'el\`ene.https://epiga.episciences.org/8550/pdfmathematics - algebraic geometrymathematics - number theory14c25 (primary) 14c35, 14g15 (secondary) |
spellingShingle | Federico Scavia Autour de la conjecture de Tate enti\`ere pour certains produits de dimension $3$ sur un corps fini Épijournal de Géométrie Algébrique mathematics - algebraic geometry mathematics - number theory 14c25 (primary) 14c35, 14g15 (secondary) |
title | Autour de la conjecture de Tate enti\`ere pour certains produits de dimension $3$ sur un corps fini |
title_full | Autour de la conjecture de Tate enti\`ere pour certains produits de dimension $3$ sur un corps fini |
title_fullStr | Autour de la conjecture de Tate enti\`ere pour certains produits de dimension $3$ sur un corps fini |
title_full_unstemmed | Autour de la conjecture de Tate enti\`ere pour certains produits de dimension $3$ sur un corps fini |
title_short | Autour de la conjecture de Tate enti\`ere pour certains produits de dimension $3$ sur un corps fini |
title_sort | autour de la conjecture de tate enti ere pour certains produits de dimension 3 sur un corps fini |
topic | mathematics - algebraic geometry mathematics - number theory 14c25 (primary) 14c35, 14g15 (secondary) |
url | https://epiga.episciences.org/8550/pdf |
work_keys_str_mv | AT federicoscavia autourdelaconjecturedetateentierepourcertainsproduitsdedimension3suruncorpsfini |