Autour de la conjecture de Tate enti\`ere pour certains produits de dimension $3$ sur un corps fini

Let $X$ be the product of a surface satisfying $b_2=\rho$ and of a curve over a finite field. We study a strong form of the integral Tate conjecture for $1$-cycles on $X$. We generalize and give unconditional proofs of several results of our previous paper with J.-L. Colliot-Th\'el\`ene.

Bibliographic Details
Main Author: Federico Scavia
Format: Article
Language:English
Published: Association Epiga 2022-06-01
Series:Épijournal de Géométrie Algébrique
Subjects:
Online Access:https://epiga.episciences.org/8550/pdf