Promoting biomass electrooxidation via modulating proton and oxygen anion deintercalation in hydroxide
Developing catalysts for biomass electrooxidation are critical in electric refinery. The reaction mechanism, however, is still ambiguous. Here, the authors reveal how proton and oxygen anion deintercalation in hydroxide determine the elementary reaction steps in a model reaction of glycerol oxidatio...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2022-06-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-022-31484-0 |