Identifying the minimum amplicon sequence depth to adequately predict classes in eDNA-based marine biomonitoring using supervised machine learning
Environmental DNA metabarcoding is a powerful approach for use in biomonitoring and impact assessments. Amplicon-based eDNA sequence data are characteristically highly divergent in sequencing depth (total reads per sample) as influenced inter alia by the number of samples simultaneously analyzed per...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2021-01-01
|
Series: | Computational and Structural Biotechnology Journal |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2001037021001148 |