Secure deep learning for distributed data against maliciouscentral server
In this paper, we propose a secure system for performing deep learning with distributed trainers connected to a central parameter server. Our system has the following two distinct features: (1) the distributed trainers can detect malicious activities in the server; (2) the distributed trainers can p...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2022-01-01
|
Series: | PLoS ONE |
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9342767/?tool=EBI |