28-nm FD-SOI CMOS RF Figures of Merit Down to 4.2 K
This work presents a detailed RF characterization of 28-nm FD-SOI nMOSFETs at cryogenic temperatures down to 4.2 K. Two main RF Figures of Merit (FoMs), i.e., current-gain cutoff frequency (f<sub>t</sub>) and maximum oscillation frequency (f<sub>max</sub>), as well as parasit...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Journal of the Electron Devices Society |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9117028/ |
_version_ | 1818619929239224320 |
---|---|
author | Lucas Nyssens Arka Halder Babak Kazemi Esfeh Nicolas Planes Denis Flandre Valeriya Kilchytska Jean-Pierre Raskin |
author_facet | Lucas Nyssens Arka Halder Babak Kazemi Esfeh Nicolas Planes Denis Flandre Valeriya Kilchytska Jean-Pierre Raskin |
author_sort | Lucas Nyssens |
collection | DOAJ |
description | This work presents a detailed RF characterization of 28-nm FD-SOI nMOSFETs at cryogenic temperatures down to 4.2 K. Two main RF Figures of Merit (FoMs), i.e., current-gain cutoff frequency (f<sub>t</sub>) and maximum oscillation frequency (f<sub>max</sub>), as well as parasitic elements of the small-signal equivalent circuit, are extracted from the measured S-parameters. An improvement of up to ~130 GHz in f<sub>t</sub> and ~75 GHz in f<sub>max</sub> is observed for the shortest device (25 nm) at low temperature. The behavior of RF FoMs versus temperature is discussed in terms of small-signal equivalent circuit elements, both intrinsic and extrinsic (parasitics). This study suggests 28-nm FD-SOI nMOSFETs as a good candidate for future cryogenic applications down to 4.2 K and clarifies the origin and limitations of the performance. |
first_indexed | 2024-12-16T17:45:17Z |
format | Article |
id | doaj.art-604d5dc80ab54f939d62a7e5ef122832 |
institution | Directory Open Access Journal |
issn | 2168-6734 |
language | English |
last_indexed | 2024-12-16T17:45:17Z |
publishDate | 2020-01-01 |
publisher | IEEE |
record_format | Article |
series | IEEE Journal of the Electron Devices Society |
spelling | doaj.art-604d5dc80ab54f939d62a7e5ef1228322022-12-21T22:22:30ZengIEEEIEEE Journal of the Electron Devices Society2168-67342020-01-01864665410.1109/JEDS.2020.3002201911702828-nm FD-SOI CMOS RF Figures of Merit Down to 4.2 KLucas Nyssens0https://orcid.org/0000-0003-3996-7553Arka Halder1Babak Kazemi Esfeh2https://orcid.org/0000-0002-3104-890XNicolas Planes3Denis Flandre4https://orcid.org/0000-0001-5298-5196Valeriya Kilchytska5Jean-Pierre Raskin6https://orcid.org/0000-0001-9715-9699Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, BelgiumInstitute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, BelgiumInstitute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, BelgiumST-Microelectronics, Crolles, FranceInstitute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, BelgiumInstitute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, BelgiumInstitute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, BelgiumThis work presents a detailed RF characterization of 28-nm FD-SOI nMOSFETs at cryogenic temperatures down to 4.2 K. Two main RF Figures of Merit (FoMs), i.e., current-gain cutoff frequency (f<sub>t</sub>) and maximum oscillation frequency (f<sub>max</sub>), as well as parasitic elements of the small-signal equivalent circuit, are extracted from the measured S-parameters. An improvement of up to ~130 GHz in f<sub>t</sub> and ~75 GHz in f<sub>max</sub> is observed for the shortest device (25 nm) at low temperature. The behavior of RF FoMs versus temperature is discussed in terms of small-signal equivalent circuit elements, both intrinsic and extrinsic (parasitics). This study suggests 28-nm FD-SOI nMOSFETs as a good candidate for future cryogenic applications down to 4.2 K and clarifies the origin and limitations of the performance.https://ieeexplore.ieee.org/document/9117028/28-nm FD-SOIUTBB MOSFETcryogenic CMOSRF figures of meritsmall-signal modelingliquid helium temperature |
spellingShingle | Lucas Nyssens Arka Halder Babak Kazemi Esfeh Nicolas Planes Denis Flandre Valeriya Kilchytska Jean-Pierre Raskin 28-nm FD-SOI CMOS RF Figures of Merit Down to 4.2 K IEEE Journal of the Electron Devices Society 28-nm FD-SOI UTBB MOSFET cryogenic CMOS RF figures of merit small-signal modeling liquid helium temperature |
title | 28-nm FD-SOI CMOS RF Figures of Merit Down to 4.2 K |
title_full | 28-nm FD-SOI CMOS RF Figures of Merit Down to 4.2 K |
title_fullStr | 28-nm FD-SOI CMOS RF Figures of Merit Down to 4.2 K |
title_full_unstemmed | 28-nm FD-SOI CMOS RF Figures of Merit Down to 4.2 K |
title_short | 28-nm FD-SOI CMOS RF Figures of Merit Down to 4.2 K |
title_sort | 28 nm fd soi cmos rf figures of merit down to 4 2 k |
topic | 28-nm FD-SOI UTBB MOSFET cryogenic CMOS RF figures of merit small-signal modeling liquid helium temperature |
url | https://ieeexplore.ieee.org/document/9117028/ |
work_keys_str_mv | AT lucasnyssens 28nmfdsoicmosrffiguresofmeritdownto42k AT arkahalder 28nmfdsoicmosrffiguresofmeritdownto42k AT babakkazemiesfeh 28nmfdsoicmosrffiguresofmeritdownto42k AT nicolasplanes 28nmfdsoicmosrffiguresofmeritdownto42k AT denisflandre 28nmfdsoicmosrffiguresofmeritdownto42k AT valeriyakilchytska 28nmfdsoicmosrffiguresofmeritdownto42k AT jeanpierreraskin 28nmfdsoicmosrffiguresofmeritdownto42k |