Semiparametric Bayesian analysis of high-dimensional censored outcome data

The Surveillance, Epidemiology and End Results (SEER) cancer database contains survival data for US individuals diagnosed with cancer. Semiparametric Bayesian methods are computationally expensive to fit for such large data-sets. This paper develops a cost-effective Markov chain Monte Carlo strategy...

Full description

Bibliographic Details
Main Authors: Chetkar Jha, Yi Li, Subharup Guha
Format: Article
Language:English
Published: Taylor & Francis Group 2017-07-01
Series:Statistical Theory and Related Fields
Subjects:
Online Access:http://dx.doi.org/10.1080/24754269.2017.1396436