Prediction of Long-Term Stroke Recurrence Using Machine Learning Models
Background: The long-term risk of recurrent ischemic stroke, estimated to be between 17% and 30%, cannot be reliably assessed at an individual level. Our goal was to study whether machine-learning can be trained to predict stroke recurrence and identify key clinical variables and assess whether perf...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-03-01
|
Series: | Journal of Clinical Medicine |
Subjects: | |
Online Access: | https://www.mdpi.com/2077-0383/10/6/1286 |