Sec-Lib: Protecting Scholarly Digital Libraries From Infected Papers Using Active Machine Learning Framework
Researchers from academia and the corporate-sector rely on scholarly digital libraries to access articles. Attackers take advantage of innocent users who consider the articles' files safe and thus open PDF-files with little concern. In addition, researchers consider scholarly libraries a reliab...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8788686/ |