Improving fold resistance prediction of HIV-1 against protease and reverse transcriptase inhibitors using artificial neural networks
Abstract Background Drug resistance in HIV treatment is still a worldwide problem. Predicting resistance to antiretrovirals (ARVs) before starting any treatment is important. Prediction accuracy is essential, as low-accuracy predictions increase the risk of prescribing sub-optimal drug regimens lead...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2017-08-01
|
Series: | BMC Bioinformatics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s12859-017-1782-x |