Matroids related to groups and semigroups
Matroid is defined as a pair $(X,\mathcal{I})$, where $X$ is a nonempty finite set, and $\mathcal{I}$ is a nonempty set of subsets of $X$ that satisfies the Hereditary Axiom and the Augmentation Axiom. The paper investigates for which semigroups (primarily finite) $S$, the pair $(\widehat{S}, \math...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Oles Honchar Dnipro National University
2023-12-01
|
Series: | Researches in Mathematics |
Subjects: | |
Online Access: | https://vestnmath.dnu.dp.ua/index.php/rim/article/view/404/404 |