Combined Inactivation of Pocket Proteins and APC/C<sup>Cdh1</sup> by Cdk4/6 Controls Recovery from DNA Damage in G1 Phase

Most Cyclin-dependent kinases (Cdks) are redundant for normal cell division. Here we tested whether these redundancies are maintained during cell cycle recovery after a DNA damage-induced arrest in G1. Using non-transformed RPE-1 cells, we find that while Cdk4 and Cdk6 act redundantly during normal...

Full description

Bibliographic Details
Main Authors: Indra A. Shaltiel, Alba Llopis, Melinda Aprelia, Rob Klompmaker, Apostolos Menegakis, Lenno Krenning, René H. Medema
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Cells
Subjects:
Online Access:https://www.mdpi.com/2073-4409/10/3/550
Description
Summary:Most Cyclin-dependent kinases (Cdks) are redundant for normal cell division. Here we tested whether these redundancies are maintained during cell cycle recovery after a DNA damage-induced arrest in G1. Using non-transformed RPE-1 cells, we find that while Cdk4 and Cdk6 act redundantly during normal S-phase entry, they both become essential for S-phase entry after DNA damage in G1. We show that this is due to a greater overall dependency for Cdk4/6 activity, rather than to independent functions of either kinase. In addition, we show that inactivation of pocket proteins is sufficient to overcome the inhibitory effects of complete Cdk4/6 inhibition in otherwise unperturbed cells, but that this cannot revert the effects of Cdk4/6 inhibition in DNA damaged cultures. Indeed, we could confirm that, in addition to inactivation of pocket proteins, Cdh1-dependent anaphase-promoting complex/cyclosome (APC/C<sup>Cdh1</sup>) activity needs to be inhibited to promote S-phase entry in damaged cultures. Collectively, our data indicate that DNA damage in G1 creates a unique situation where high levels of Cdk4/6 activity are required to inactivate pocket proteins and APC/C<sup>Cdh1</sup> to promote the transition from G1 to S phase.
ISSN:2073-4409