Event-Triggered Relearning Modeling Method for Stochastic System with Non-Stationary Variable Operating Conditions
This study presents a novel event-triggered relearning framework for neural network modeling, designed to improve prediction precision in dynamic stochastic complex industrial systems under non-stationary and variable conditions. Firstly, a sliding window algorithm combined with entropy is applied t...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-02-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/12/5/667 |