Extremal values on Zagreb indices of trees with given distance k-domination number

Abstract Let G = ( V ( G ) , E ( G ) ) $G=(V(G),E(G))$ be a graph. A set D ⊆ V ( G ) $D\subseteq V(G)$ is a distance k-dominating set of G if for every vertex u ∈ V ( G ) ∖ D $u\in V(G)\setminus D$ , d G ( u , v ) ≤ k $d_{G}(u,v)\leq k$ for some vertex v ∈ D $v\in D$ , where k is a positive integer....

Full description

Bibliographic Details
Main Authors: Lidan Pei, Xiangfeng Pan
Format: Article
Language:English
Published: SpringerOpen 2018-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-017-1597-3