Extremal values on Zagreb indices of trees with given distance k-domination number
Abstract Let G = ( V ( G ) , E ( G ) ) $G=(V(G),E(G))$ be a graph. A set D ⊆ V ( G ) $D\subseteq V(G)$ is a distance k-dominating set of G if for every vertex u ∈ V ( G ) ∖ D $u\in V(G)\setminus D$ , d G ( u , v ) ≤ k $d_{G}(u,v)\leq k$ for some vertex v ∈ D $v\in D$ , where k is a positive integer....
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-01-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-017-1597-3 |