Biodereplication of Antiplasmodial Extracts: Application of the Amazonian Medicinal Plant <i>Piper coruscans</i> Kunth
Improved methodological tools to hasten antimalarial drug discovery remain of interest, especially when considering natural products as a source of drug candidates. We propose a biodereplication method combining the classical dereplication approach with the early detection of potential antiplasmodia...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-11-01
|
Series: | Molecules |
Subjects: | |
Online Access: | https://www.mdpi.com/1420-3049/27/21/7638 |
_version_ | 1797467034958692352 |
---|---|
author | Pedro G. Vásquez-Ocmín Jean-François Gallard Anne-Cécile Van Baelen Karine Leblanc Sandrine Cojean Elisabeth Mouray Philippe Grellier Carlos A. Amasifuén Guerra Mehdi A. Beniddir Laurent Evanno Bruno Figadère Alexandre Maciuk |
author_facet | Pedro G. Vásquez-Ocmín Jean-François Gallard Anne-Cécile Van Baelen Karine Leblanc Sandrine Cojean Elisabeth Mouray Philippe Grellier Carlos A. Amasifuén Guerra Mehdi A. Beniddir Laurent Evanno Bruno Figadère Alexandre Maciuk |
author_sort | Pedro G. Vásquez-Ocmín |
collection | DOAJ |
description | Improved methodological tools to hasten antimalarial drug discovery remain of interest, especially when considering natural products as a source of drug candidates. We propose a biodereplication method combining the classical dereplication approach with the early detection of potential antiplasmodial compounds in crude extracts. Heme binding is used as a surrogate of the antiplasmodial activity and is monitored by mass spectrometry in a biomimetic assay. Molecular networking and automated annotation of targeted mass through data mining were followed by mass-guided compound isolation by taking advantage of the versatility and finely tunable selectivity offered by centrifugal partition chromatography. This biodereplication workflow was applied to an ethanolic extract of the Amazonian medicinal plant <i>Piper coruscans</i> Kunth (Piperaceae) showing an IC<sub>50</sub> of 1.36 µg/mL on the 3D7 <i>Plasmodium falciparum</i> strain. It resulted in the isolation of twelve compounds designated as potential antiplasmodial compounds by the biodereplication workflow. Two chalcones, aurentiacin (1) and cardamonin (3), with IC<sub>50</sub> values of 2.25 and 5.5 µM, respectively, can be considered to bear the antiplasmodial activity of the extract, with the latter not relying on a heme-binding mechanism. This biodereplication method constitutes a rapid, efficient, and robust technique to identify potential antimalarial compounds in complex extracts such as plant extracts. |
first_indexed | 2024-03-09T18:46:58Z |
format | Article |
id | doaj.art-6357564ec4164788b7c0cf5a501a74e6 |
institution | Directory Open Access Journal |
issn | 1420-3049 |
language | English |
last_indexed | 2024-03-09T18:46:58Z |
publishDate | 2022-11-01 |
publisher | MDPI AG |
record_format | Article |
series | Molecules |
spelling | doaj.art-6357564ec4164788b7c0cf5a501a74e62023-11-24T06:07:26ZengMDPI AGMolecules1420-30492022-11-012721763810.3390/molecules27217638Biodereplication of Antiplasmodial Extracts: Application of the Amazonian Medicinal Plant <i>Piper coruscans</i> KunthPedro G. Vásquez-Ocmín0Jean-François Gallard1Anne-Cécile Van Baelen2Karine Leblanc3Sandrine Cojean4Elisabeth Mouray5Philippe Grellier6Carlos A. Amasifuén Guerra7Mehdi A. Beniddir8Laurent Evanno9Bruno Figadère10Alexandre Maciuk11Université Paris-Saclay, CNRS, BioCIS, 91400 Orsay, FranceInstitut de Chimie des Substances Naturelles CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, FranceUniversité Paris-Saclay, CNRS, BioCIS, 91400 Orsay, FranceUniversité Paris-Saclay, CNRS, BioCIS, 91400 Orsay, FranceUniversité Paris-Saclay, CNRS, BioCIS, 91400 Orsay, FranceUnité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Universités, CP52, 57 Rue Cuvier, 75005 Paris, FranceUnité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Universités, CP52, 57 Rue Cuvier, 75005 Paris, FranceDirección de Recursos Genéticos y Biotecnología (DRGB), Instituto Nacional de Innovación Agraria (INIA), Avenida La Molina N° 1981, La Molina, Lima 15024, PeruUniversité Paris-Saclay, CNRS, BioCIS, 91400 Orsay, FranceUniversité Paris-Saclay, CNRS, BioCIS, 91400 Orsay, FranceUniversité Paris-Saclay, CNRS, BioCIS, 91400 Orsay, FranceUniversité Paris-Saclay, CNRS, BioCIS, 91400 Orsay, FranceImproved methodological tools to hasten antimalarial drug discovery remain of interest, especially when considering natural products as a source of drug candidates. We propose a biodereplication method combining the classical dereplication approach with the early detection of potential antiplasmodial compounds in crude extracts. Heme binding is used as a surrogate of the antiplasmodial activity and is monitored by mass spectrometry in a biomimetic assay. Molecular networking and automated annotation of targeted mass through data mining were followed by mass-guided compound isolation by taking advantage of the versatility and finely tunable selectivity offered by centrifugal partition chromatography. This biodereplication workflow was applied to an ethanolic extract of the Amazonian medicinal plant <i>Piper coruscans</i> Kunth (Piperaceae) showing an IC<sub>50</sub> of 1.36 µg/mL on the 3D7 <i>Plasmodium falciparum</i> strain. It resulted in the isolation of twelve compounds designated as potential antiplasmodial compounds by the biodereplication workflow. Two chalcones, aurentiacin (1) and cardamonin (3), with IC<sub>50</sub> values of 2.25 and 5.5 µM, respectively, can be considered to bear the antiplasmodial activity of the extract, with the latter not relying on a heme-binding mechanism. This biodereplication method constitutes a rapid, efficient, and robust technique to identify potential antimalarial compounds in complex extracts such as plant extracts.https://www.mdpi.com/1420-3049/27/21/7638<i>Piper coruscans</i> Kunth (Piperaceae)biodereplicationheme bindingmass spectrometry<i>Plasmodium</i> |
spellingShingle | Pedro G. Vásquez-Ocmín Jean-François Gallard Anne-Cécile Van Baelen Karine Leblanc Sandrine Cojean Elisabeth Mouray Philippe Grellier Carlos A. Amasifuén Guerra Mehdi A. Beniddir Laurent Evanno Bruno Figadère Alexandre Maciuk Biodereplication of Antiplasmodial Extracts: Application of the Amazonian Medicinal Plant <i>Piper coruscans</i> Kunth Molecules <i>Piper coruscans</i> Kunth (Piperaceae) biodereplication heme binding mass spectrometry <i>Plasmodium</i> |
title | Biodereplication of Antiplasmodial Extracts: Application of the Amazonian Medicinal Plant <i>Piper coruscans</i> Kunth |
title_full | Biodereplication of Antiplasmodial Extracts: Application of the Amazonian Medicinal Plant <i>Piper coruscans</i> Kunth |
title_fullStr | Biodereplication of Antiplasmodial Extracts: Application of the Amazonian Medicinal Plant <i>Piper coruscans</i> Kunth |
title_full_unstemmed | Biodereplication of Antiplasmodial Extracts: Application of the Amazonian Medicinal Plant <i>Piper coruscans</i> Kunth |
title_short | Biodereplication of Antiplasmodial Extracts: Application of the Amazonian Medicinal Plant <i>Piper coruscans</i> Kunth |
title_sort | biodereplication of antiplasmodial extracts application of the amazonian medicinal plant i piper coruscans i kunth |
topic | <i>Piper coruscans</i> Kunth (Piperaceae) biodereplication heme binding mass spectrometry <i>Plasmodium</i> |
url | https://www.mdpi.com/1420-3049/27/21/7638 |
work_keys_str_mv | AT pedrogvasquezocmin biodereplicationofantiplasmodialextractsapplicationoftheamazonianmedicinalplantipipercoruscansikunth AT jeanfrancoisgallard biodereplicationofantiplasmodialextractsapplicationoftheamazonianmedicinalplantipipercoruscansikunth AT annececilevanbaelen biodereplicationofantiplasmodialextractsapplicationoftheamazonianmedicinalplantipipercoruscansikunth AT karineleblanc biodereplicationofantiplasmodialextractsapplicationoftheamazonianmedicinalplantipipercoruscansikunth AT sandrinecojean biodereplicationofantiplasmodialextractsapplicationoftheamazonianmedicinalplantipipercoruscansikunth AT elisabethmouray biodereplicationofantiplasmodialextractsapplicationoftheamazonianmedicinalplantipipercoruscansikunth AT philippegrellier biodereplicationofantiplasmodialextractsapplicationoftheamazonianmedicinalplantipipercoruscansikunth AT carlosaamasifuenguerra biodereplicationofantiplasmodialextractsapplicationoftheamazonianmedicinalplantipipercoruscansikunth AT mehdiabeniddir biodereplicationofantiplasmodialextractsapplicationoftheamazonianmedicinalplantipipercoruscansikunth AT laurentevanno biodereplicationofantiplasmodialextractsapplicationoftheamazonianmedicinalplantipipercoruscansikunth AT brunofigadere biodereplicationofantiplasmodialextractsapplicationoftheamazonianmedicinalplantipipercoruscansikunth AT alexandremaciuk biodereplicationofantiplasmodialextractsapplicationoftheamazonianmedicinalplantipipercoruscansikunth |