Exact number of solutions for a Neumann problem involving the p-Laplacian
We study the exact number of solutions of the quasilinear Neumann boundary-value problem $$\displaylines{ (\varphi_p(u'(t)))'+g(u(t))=h(t)\quad\text{in } (a,b),\cr u'(a)=u'(b)=0, }$$ where $\varphi_p(s)=|s|^{p-2}s$ denotes the one-dimensional p-Laplacian. Under appropriat...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2014-01-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2014/30/abstr.html |