Exact number of solutions for a Neumann problem involving the p-Laplacian

We study the exact number of solutions of the quasilinear Neumann boundary-value problem $$\displaylines{ (\varphi_p(u'(t)))'+g(u(t))=h(t)\quad\text{in } (a,b),\cr u'(a)=u'(b)=0, }$$ where $\varphi_p(s)=|s|^{p-2}s$ denotes the one-dimensional p-Laplacian. Under appropriat...

Full description

Bibliographic Details
Main Authors: Justino Sanchez, Vicente Vergara
Format: Article
Language:English
Published: Texas State University 2014-01-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2014/30/abstr.html