Exact number of solutions for a Neumann problem involving the p-Laplacian

We study the exact number of solutions of the quasilinear Neumann boundary-value problem $$\displaylines{ (\varphi_p(u'(t)))'+g(u(t))=h(t)\quad\text{in } (a,b),\cr u'(a)=u'(b)=0, }$$ where $\varphi_p(s)=|s|^{p-2}s$ denotes the one-dimensional p-Laplacian. Under appropriat...

Full description

Bibliographic Details
Main Authors: Justino Sanchez, Vicente Vergara
Format: Article
Language:English
Published: Texas State University 2014-01-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2014/30/abstr.html
_version_ 1828223706169606144
author Justino Sanchez
Vicente Vergara
author_facet Justino Sanchez
Vicente Vergara
author_sort Justino Sanchez
collection DOAJ
description We study the exact number of solutions of the quasilinear Neumann boundary-value problem $$\displaylines{ (\varphi_p(u'(t)))'+g(u(t))=h(t)\quad\text{in } (a,b),\cr u'(a)=u'(b)=0, }$$ where $\varphi_p(s)=|s|^{p-2}s$ denotes the one-dimensional p-Laplacian. Under appropriate hypotheses on g and h, we obtain existence, multiplicity, exactness and non existence results. The existence of solutions is proved using the method of upper and lower solutions.
first_indexed 2024-04-12T17:11:15Z
format Article
id doaj.art-637768df84594e4b852277ac99f68d95
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-04-12T17:11:15Z
publishDate 2014-01-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-637768df84594e4b852277ac99f68d952022-12-22T03:23:48ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912014-01-01201430,110Exact number of solutions for a Neumann problem involving the p-LaplacianJustino Sanchez0Vicente Vergara1 Univ. de La Serena, Chile Univ. de Tarapaca, Arica, Chile We study the exact number of solutions of the quasilinear Neumann boundary-value problem $$\displaylines{ (\varphi_p(u'(t)))'+g(u(t))=h(t)\quad\text{in } (a,b),\cr u'(a)=u'(b)=0, }$$ where $\varphi_p(s)=|s|^{p-2}s$ denotes the one-dimensional p-Laplacian. Under appropriate hypotheses on g and h, we obtain existence, multiplicity, exactness and non existence results. The existence of solutions is proved using the method of upper and lower solutions.http://ejde.math.txstate.edu/Volumes/2014/30/abstr.htmlNeumann boundary value problemp-Laplacianlower-upper solutionsexact multiplicity
spellingShingle Justino Sanchez
Vicente Vergara
Exact number of solutions for a Neumann problem involving the p-Laplacian
Electronic Journal of Differential Equations
Neumann boundary value problem
p-Laplacian
lower-upper solutions
exact multiplicity
title Exact number of solutions for a Neumann problem involving the p-Laplacian
title_full Exact number of solutions for a Neumann problem involving the p-Laplacian
title_fullStr Exact number of solutions for a Neumann problem involving the p-Laplacian
title_full_unstemmed Exact number of solutions for a Neumann problem involving the p-Laplacian
title_short Exact number of solutions for a Neumann problem involving the p-Laplacian
title_sort exact number of solutions for a neumann problem involving the p laplacian
topic Neumann boundary value problem
p-Laplacian
lower-upper solutions
exact multiplicity
url http://ejde.math.txstate.edu/Volumes/2014/30/abstr.html
work_keys_str_mv AT justinosanchez exactnumberofsolutionsforaneumannprobleminvolvingtheplaplacian
AT vicentevergara exactnumberofsolutionsforaneumannprobleminvolvingtheplaplacian