Higher polymerase activity of a human influenza virus enhances activation of the hemagglutinin-induced Raf/MEK/ERK signal cascade

<p>Abstract</p> <p>Influenza viruses replicate within the nucleus of infected cells. Viral genomic RNA, three polymerase subunits (PB2, PB1, and PA), and the nucleoprotein (NP) form ribonucleoprotein complexes (RNPs) that are exported from the nucleus late during the infectious cyc...

Full description

Bibliographic Details
Main Authors: Webster Robert G, Franks John, Yen Hui-Ling, Marjuki Henju, Pleschka Stephan, Hoffmann Erich
Format: Article
Language:English
Published: BMC 2007-12-01
Series:Virology Journal
Online Access:http://www.virologyj.com/content/4/1/134
Description
Summary:<p>Abstract</p> <p>Influenza viruses replicate within the nucleus of infected cells. Viral genomic RNA, three polymerase subunits (PB2, PB1, and PA), and the nucleoprotein (NP) form ribonucleoprotein complexes (RNPs) that are exported from the nucleus late during the infectious cycle. The virus-induced Raf/MEK/ERK (MAPK) signal cascade is crucial for efficient virus replication. Blockade of this pathway retards RNP export and reduces virus titers. Hemagglutinin (HA) accumulation and its tight association with lipid rafts activate ERK and enhance localization of cytoplasmic RNPs. We studied the induction of MAPK signal cascade by two seasonal human influenza A viruses A/HK/218449/06 (H3N2) and A/HK/218847/06 (H1N1) that differed substantially in their replication efficiency in tissue culture. Infection with H3N2 virus, which replicates efficiently, resulted in higher HA expression and its accumulation on the cell membrane, leading to substantially increased activation of MAPK signaling compared to that caused by H1N1 subtype. More H3N2-HAs were expressed and accumulated on the cell membrane than did H1N1-HAs. Viral polymerase genes, particularly H3N2-PB1 and H3N2-PB2, were observed to contribute to increased viral polymerase activity. Applying plasmid-based reverse genetics to analyze the role of PB1 protein in activating HA-induced MAPK cascade showed that recombinant H1N1 virus possessing the H3N2-PB1 (rgH1N1/H3N2-PB1) induced greater ERK activation, resulting in increased nuclear export of the viral genome and higr virus titers. We conclude that enhanced viral polymerase activity promotes the replication and transcription of viral RNA leading to increased accumulation of HA on the cell surface and thereby resulting in an upregulation of the MAPK cascade and more efficient nuclear RNP-export as well as virus production.</p>
ISSN:1743-422X