Prediction of Burr Types in Drilling of Al-7075 Using Acoustic Emission and Convolution Neural Networks
The formation of exit burrs during the drilling of ductile metals such as aluminum is critical in precision manufacturing and manufacturing automation. Because drilling burrs are difficult to remove, methods to predict various burr types and/or implement burr minimization schemes that consider the v...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2022-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9807282/ |