Counting sums of exceptional units in $ \mathbb{Z}_n $
Let $ R $ be a commutative ring with the identity $ 1_{R} $, and let $ R^* $ be the multiplicative group of units in $ R $. An element $ a\in R^* $ is called an exceptional unit if there exists a $ b\in R^* $ such that $ a+b = 1_{R} $. We set $ R^{**} $ to be the set of all exceptional units in $ R...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2024-08-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/math.20241195?viewType=HTML |