Summary: | Enterovirus A71 (EV-A71), coxsackievirus A16 (CV-A16), and CV-A10 belong to the main prevailing types causing hand-foot-and-mouth disease. Since EV-A71 monovalent vaccine does not confer cross-protection, developing a multivalent vaccine is essential. In this study, a trivalent chimeric virus-like particle of EV-A71 (EV-A71-VLPCHI3) was constructed based on EV-A71-VLP backbone by replacing the corresponding surface loops with CV-A16 VP1 G-H, CV-A10 VP1 B-C and E-F loops, which are critical for immunogenic neutralization. The baculovirus-insect cell expression system was employed for EV-A71-VLPCHI3 production. EV-A71-VLPCHI3 was purified by sucrose density gradient and observed by transmission electron microscopy. The immunogenicity and protective efficacy of EV-A71-VLPCHI3 were evaluated in mice. Our results revealed that EV-A71-VLPCHI3 had a similar morphology to inactivated EV-A71 particles and could induce specific IgG antibodies against EV-A71, CV-A16 and CV-A10 in mice. More importantly, EV-A71-VLPCHI3 enhanced cross-reactive protection against CV-A16 and CV-A10, by 20 % and 40 %, compared to inactivated EV-A71 counterparts, respectively. In conclusion, the successful construction of EV-A71-VLPCHI3 suggested that loop-dependent heterologous protection could be transferred by loops replacement on the surface of viral capsid. This strategy may also supplement the development of multivalent vaccines against other infectious viral diseases.
|