Machine Learning and Deep Learning Optimization Algorithms for Unconstrained Convex Optimization Problem
This paper conducts a thorough comparative analysis of optimization algorithms for an unconstrained convex optimization problem. It contrasts traditional methods like Gradient Descent (GD) and Nesterov Accelerated Gradient (NAG) with modern techniques such as Adaptive Moment Estimation (Adam), Long...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2025-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10815950/ |