Comparison of Random Forest and Support Vector Machine Classifiers for Regional Land Cover Mapping Using Coarse Resolution FY-3C Images
The type of algorithm employed to classify remote sensing imageries plays a great role in affecting the accuracy. In recent decades, machine learning (ML) has received great attention due to its robustness in remote sensing image classification. In this regard, random forest (RF) and support vector...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-01-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/14/3/574 |