Synthesis and Acaricidal Activities of Scopoletin Phenolic Ether Derivatives: QSAR, Molecular Docking Study and in Silico ADME Predictions

Thirty phenolic ether derivatives of scopoletin modified at the 7-hydroxy position were synthesized, and their structures were confirmed by IR, 1H-NMR, 13C-NMR, MS and elemental analysis. Preliminary acaricidal activities of these compounds against female adults of Tetranychus cinnabarinus (Boisduva...

Full description

Bibliographic Details
Main Authors: Jinxiang Luo, Ting Lai, Tao Guo, Fei Chen, Linli Zhang, Wei Ding, Yongqiang Zhang
Format: Article
Language:English
Published: MDPI AG 2018-04-01
Series:Molecules
Subjects:
Online Access:http://www.mdpi.com/1420-3049/23/5/995
Description
Summary:Thirty phenolic ether derivatives of scopoletin modified at the 7-hydroxy position were synthesized, and their structures were confirmed by IR, 1H-NMR, 13C-NMR, MS and elemental analysis. Preliminary acaricidal activities of these compounds against female adults of Tetranychus cinnabarinus (Boisduval) were evaluated using the slide-dip method. The results indicated that some of these compounds exhibit more pronounced acaricidal activity than scopoletin, especially compounds 32, 20, 28, 27 and 8 which exhibited about 8.41-, 7.32-, 7.23-, 6.76-, and 6.65-fold higher acaricidal potency. Compound 32 possessed the the most promising acaricidal activity and exhibited about 1.45-fold higher acaricidal potency against T. cinnabarinus than propargite. Statistically significant 2D-QSAR model supports the observed acaricidal activities and reveals that polarizability (HATS5p) was the most important parameter controlling bioactivity. 3D-QSAR (CoMFA: q2 = 0.802, r2 = 0.993; CoMSIA: q2 = 0.735, r2 = 0.965) results show that bulky substituents at R4, R1, R2 and R5 (C6, C3, C4, and C7) positions, electron positive groups at R5 (C7) position, hydrophobic groups at R1 (C3) and R2 (C4), H-bond donors groups at R1 (C3) and R4 (C6) will increase their acaricidal activity, which provide a good insight into the molecular features relevant to the acaricidal activity for further designing novel acaricidal agents. Molecular docking demonstrates that these selected derivatives display different bide modes with TcPMCA1 from lead compound and they interact with more key amino acid residues than scopoletin. In silico ADME properties of scopoletin and its phenolic ether derivatives were also analyzed and showed potential to develop as good acaricidal candidates.
ISSN:1420-3049