Maximal estimates for fractional Schr\"odinger equations with spatial variable coefficient

Let $v(r,t)=\mathcal{T}_tv_0(r)$ be the solution to a fractional Schrodinger equation where the coefficient of Laplacian depends on the spatial variable. We prove some weighted $L^q$ estimates for the maximal operator generated by $\mathcal{T}_t$ with initial data in a Sobolev-type space.

Bibliographic Details
Main Author: Bo-Wen Zheng
Format: Article
Language:English
Published: Texas State University 2018-07-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2018/139/abstr.html