A Systematic Approach to Portfolio Optimization: A Comparative Study of Reinforcement Learning Agents, Market Signals, and Investment Horizons
This paper presents a systematic exploration of deep reinforcement learning (RL) for portfolio optimization and compares various agent architectures, such as the DQN, DDPG, PPO, and SAC. We evaluate these agents’ performance across multiple market signals, including OHLC price data and technical ind...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-12-01
|
Series: | Algorithms |
Subjects: | |
Online Access: | https://www.mdpi.com/1999-4893/17/12/570 |