An Anti-Interference Control Method for an AGV-WPT System Based on UIO-SMC

During the wireless charging of an automated guided vehicle (AGV), the output voltage is unstable due to changes in parameters such as coil mutual inductance and load resistance caused by external interferences and internal mismatches of the system. In this paper, an integral sliding mode control me...

Full description

Bibliographic Details
Main Authors: Jun Hou, Weidong Huang, Dongxiao Huang
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:World Electric Vehicle Journal
Subjects:
Online Access:https://www.mdpi.com/2032-6653/12/4/220
Description
Summary:During the wireless charging of an automated guided vehicle (AGV), the output voltage is unstable due to changes in parameters such as coil mutual inductance and load resistance caused by external interferences and internal mismatches of the system. In this paper, an integral sliding mode control method based on an unknown input observer (UIO) containing predictive equations is designed to build an inductor–capacitor–capacitor-series (LCC-S) topology model for wireless power transfer (WPT). The observer designed by this method can perceive changes in the secondary resistance parameter and the mutual inductance of the primary and secondary coils. The design with the prediction equation speeds up the convergence of the observer to the true value. The observer’s compensation of the control system avoids the occurrence of integral oversaturation. The experimental results show that, based on the UIO-SMC system output, voltage can be accurately controlled to meet the requirement for a given voltage. The effect of suppressing disturbance is better than with SMC and PI control. When the system parameter changes, it has better voltage anti-interference performance and stronger ripple suppression.
ISSN:2032-6653