Igneous: Distributed dense 3D segmentation meshing, neuron skeletonization, and hierarchical downsampling

Three-dimensional electron microscopy images of brain tissue and their dense segmentations are now petascale and growing. These volumes require the mass production of dense segmentation-derived neuron skeletons, multi-resolution meshes, image hierarchies (for both modalities) for visualization and a...

Full description

Bibliographic Details
Main Authors: William Silversmith, Aleksandar Zlateski, J. Alexander Bae, Ignacio Tartavull, Nico Kemnitz, Jingpeng Wu, H. Sebastian Seung
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-11-01
Series:Frontiers in Neural Circuits
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fncir.2022.977700/full
_version_ 1828281357289127936
author William Silversmith
Aleksandar Zlateski
Aleksandar Zlateski
J. Alexander Bae
J. Alexander Bae
Ignacio Tartavull
Nico Kemnitz
Jingpeng Wu
H. Sebastian Seung
H. Sebastian Seung
author_facet William Silversmith
Aleksandar Zlateski
Aleksandar Zlateski
J. Alexander Bae
J. Alexander Bae
Ignacio Tartavull
Nico Kemnitz
Jingpeng Wu
H. Sebastian Seung
H. Sebastian Seung
author_sort William Silversmith
collection DOAJ
description Three-dimensional electron microscopy images of brain tissue and their dense segmentations are now petascale and growing. These volumes require the mass production of dense segmentation-derived neuron skeletons, multi-resolution meshes, image hierarchies (for both modalities) for visualization and analysis, and tools to manage the large amount of data. However, open tools for large-scale meshing, skeletonization, and data management have been missing. Igneous is a Python-based distributed computing framework that enables economical meshing, skeletonization, image hierarchy creation, and data management using cloud or cluster computing that has been proven to scale horizontally. We sketch Igneous's computing framework, show how to use it, and characterize its performance and data storage.
first_indexed 2024-04-13T08:14:44Z
format Article
id doaj.art-67106399db1f4c819fa84e17870aa527
institution Directory Open Access Journal
issn 1662-5110
language English
last_indexed 2024-04-13T08:14:44Z
publishDate 2022-11-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Neural Circuits
spelling doaj.art-67106399db1f4c819fa84e17870aa5272022-12-22T02:54:51ZengFrontiers Media S.A.Frontiers in Neural Circuits1662-51102022-11-011610.3389/fncir.2022.977700977700Igneous: Distributed dense 3D segmentation meshing, neuron skeletonization, and hierarchical downsamplingWilliam Silversmith0Aleksandar Zlateski1Aleksandar Zlateski2J. Alexander Bae3J. Alexander Bae4Ignacio Tartavull5Nico Kemnitz6Jingpeng Wu7H. Sebastian Seung8H. Sebastian Seung9Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United StatesPrinceton Neuroscience Institute, Princeton University, Princeton, NJ, United StatesDepartment of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United StatesPrinceton Neuroscience Institute, Princeton University, Princeton, NJ, United StatesDepartment of Electrical and Computer Engineering, Princeton University, Princeton, NJ, United StatesPrinceton Neuroscience Institute, Princeton University, Princeton, NJ, United StatesPrinceton Neuroscience Institute, Princeton University, Princeton, NJ, United StatesPrinceton Neuroscience Institute, Princeton University, Princeton, NJ, United StatesPrinceton Neuroscience Institute, Princeton University, Princeton, NJ, United StatesDepartment of Computer Science, Princeton University, Princeton, NJ, United StatesThree-dimensional electron microscopy images of brain tissue and their dense segmentations are now petascale and growing. These volumes require the mass production of dense segmentation-derived neuron skeletons, multi-resolution meshes, image hierarchies (for both modalities) for visualization and analysis, and tools to manage the large amount of data. However, open tools for large-scale meshing, skeletonization, and data management have been missing. Igneous is a Python-based distributed computing framework that enables economical meshing, skeletonization, image hierarchy creation, and data management using cloud or cluster computing that has been proven to scale horizontally. We sketch Igneous's computing framework, show how to use it, and characterize its performance and data storage.https://www.frontiersin.org/articles/10.3389/fncir.2022.977700/fullmeshingskeletonizationneuroscienceconnectomicsimage processingcloud computing
spellingShingle William Silversmith
Aleksandar Zlateski
Aleksandar Zlateski
J. Alexander Bae
J. Alexander Bae
Ignacio Tartavull
Nico Kemnitz
Jingpeng Wu
H. Sebastian Seung
H. Sebastian Seung
Igneous: Distributed dense 3D segmentation meshing, neuron skeletonization, and hierarchical downsampling
Frontiers in Neural Circuits
meshing
skeletonization
neuroscience
connectomics
image processing
cloud computing
title Igneous: Distributed dense 3D segmentation meshing, neuron skeletonization, and hierarchical downsampling
title_full Igneous: Distributed dense 3D segmentation meshing, neuron skeletonization, and hierarchical downsampling
title_fullStr Igneous: Distributed dense 3D segmentation meshing, neuron skeletonization, and hierarchical downsampling
title_full_unstemmed Igneous: Distributed dense 3D segmentation meshing, neuron skeletonization, and hierarchical downsampling
title_short Igneous: Distributed dense 3D segmentation meshing, neuron skeletonization, and hierarchical downsampling
title_sort igneous distributed dense 3d segmentation meshing neuron skeletonization and hierarchical downsampling
topic meshing
skeletonization
neuroscience
connectomics
image processing
cloud computing
url https://www.frontiersin.org/articles/10.3389/fncir.2022.977700/full
work_keys_str_mv AT williamsilversmith igneousdistributeddense3dsegmentationmeshingneuronskeletonizationandhierarchicaldownsampling
AT aleksandarzlateski igneousdistributeddense3dsegmentationmeshingneuronskeletonizationandhierarchicaldownsampling
AT aleksandarzlateski igneousdistributeddense3dsegmentationmeshingneuronskeletonizationandhierarchicaldownsampling
AT jalexanderbae igneousdistributeddense3dsegmentationmeshingneuronskeletonizationandhierarchicaldownsampling
AT jalexanderbae igneousdistributeddense3dsegmentationmeshingneuronskeletonizationandhierarchicaldownsampling
AT ignaciotartavull igneousdistributeddense3dsegmentationmeshingneuronskeletonizationandhierarchicaldownsampling
AT nicokemnitz igneousdistributeddense3dsegmentationmeshingneuronskeletonizationandhierarchicaldownsampling
AT jingpengwu igneousdistributeddense3dsegmentationmeshingneuronskeletonizationandhierarchicaldownsampling
AT hsebastianseung igneousdistributeddense3dsegmentationmeshingneuronskeletonizationandhierarchicaldownsampling
AT hsebastianseung igneousdistributeddense3dsegmentationmeshingneuronskeletonizationandhierarchicaldownsampling