Swin Transformer and the Unet Architecture to Correct Motion Artifacts in Magnetic Resonance Image Reconstruction

We present a deep learning-based method that corrects motion artifacts and thus accelerates data acquisition and reconstruction of magnetic resonance images. The novel model, the Motion Artifact Correction by Swin Network (MACS-Net), uses a Swin transformer layer as the fundamental block and the Une...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Md. Biddut Hossain, Rupali Kiran Shinde, Shariar Md Imtiaz, F. M. Fahmid Hossain, Seok-Hee Jeon, Ki-Chul Kwon, Nam Kim
Μορφή: Άρθρο
Γλώσσα:English
Έκδοση: Hindawi Limited 2024-01-01
Σειρά:International Journal of Biomedical Imaging
Διαθέσιμο Online:http://dx.doi.org/10.1155/2024/8972980