Swin Transformer and the Unet Architecture to Correct Motion Artifacts in Magnetic Resonance Image Reconstruction

We present a deep learning-based method that corrects motion artifacts and thus accelerates data acquisition and reconstruction of magnetic resonance images. The novel model, the Motion Artifact Correction by Swin Network (MACS-Net), uses a Swin transformer layer as the fundamental block and the Une...

पूर्ण विवरण

ग्रंथसूची विवरण
मुख्य लेखकों: Md. Biddut Hossain, Rupali Kiran Shinde, Shariar Md Imtiaz, F. M. Fahmid Hossain, Seok-Hee Jeon, Ki-Chul Kwon, Nam Kim
स्वरूप: लेख
भाषा:English
प्रकाशित: Hindawi Limited 2024-01-01
श्रृंखला:International Journal of Biomedical Imaging
ऑनलाइन पहुंच:http://dx.doi.org/10.1155/2024/8972980