On the structure of some minimax-antifinitary modules

Let  $R$  be a ring and $G$ a group. An  $R$-module $A$ is said to be {\it minimax} if $A$ includes a noetherian submodule $B$ such that  $A/B$  is artinian.  The author study a $\mathbb{Z}_{p^\infty}G$-module  $A$ such that $A/C_A(H)$ is minimax as a $\mathbb{Z}_{p^\infty}$-module for every proper...

Full description

Bibliographic Details
Main Author: V.A. Chupordia
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2015-07-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Subjects:
Online Access:https://journals.pnu.edu.ua/index.php/cmp/article/view/1391