On the structure of some minimax-antifinitary modules
Let $R$ be a ring and $G$ a group. An $R$-module $A$ is said to be {\it minimax} if $A$ includes a noetherian submodule $B$ such that $A/B$ is artinian. The author study a $\mathbb{Z}_{p^\infty}G$-module $A$ such that $A/C_A(H)$ is minimax as a $\mathbb{Z}_{p^\infty}$-module for every proper...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Vasyl Stefanyk Precarpathian National University
2015-07-01
|
Series: | Karpatsʹkì Matematičnì Publìkacìï |
Subjects: | |
Online Access: | https://journals.pnu.edu.ua/index.php/cmp/article/view/1391 |