Skip to content
VuFind
    • English
    • Deutsch
    • Español
    • Français
    • Italiano
    • 日本語
    • Nederlands
    • Português
    • Português (Brasil)
    • 中文(简体)
    • 中文(繁體)
    • Türkçe
    • עברית
    • Gaeilge
    • Cymraeg
    • Ελληνικά
    • Català
    • Euskara
    • Русский
    • Čeština
    • Suomi
    • Svenska
    • polski
    • Dansk
    • slovenščina
    • اللغة العربية
    • বাংলা
    • Galego
    • Tiếng Việt
    • Hrvatski
    • हिंदी
    • Հայերէն
    • Українська
    • Sámegiella
    • Монгол
Advanced
  • On a Kirchhoff Equation in Bou...
  • Cite this
  • Text this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
  • Permanent link
On a Kirchhoff Equation in Bounded Domains

On a Kirchhoff Equation in Bounded Domains

In this paper, we consider the following Kirchhoff equation:

Bibliographic Details
Main Authors: Huang Yisheng, Wu Yuanze
Format: Article
Language:English
Published: De Gruyter 2018-08-01
Series:Advanced Nonlinear Studies
Subjects:
kirchhoff-type equation
positive solution
sign-changing solution
variational method
35b09
35b33
35j20
Online Access:https://doi.org/10.1515/ans-2017-6042
  • Holdings
  • Description
  • Similar Items
  • Staff View

Internet

https://doi.org/10.1515/ans-2017-6042

Similar Items

  • Multiple positive solutions for a class of Kirchhoff type equations with indefinite nonlinearities
    by: Che Guofeng, et al.
    Published: (2021-11-01)
  • Ground state solutions and multiple positive solutions for nonhomogeneous Kirchhoff equation with Berestycki-Lions type conditions
    by: Huang Lanxin, et al.
    Published: (2024-12-01)
  • Ground State Solutions for Kirchhoff Type Quasilinear Equations
    by: Liu Xiangqing, et al.
    Published: (2019-05-01)
  • A multiplicity result for asymptotically linear Kirchhoff equations
    by: Ji Chao, et al.
    Published: (2017-03-01)
  • Ground state solutions for Kirchhoff-type equations with a general nonlinearity in the critical growth
    by: Xu Li-Ping, et al.
    Published: (2018-11-01)

Search Options

  • Search History
  • Advanced Search

Find More

  • Browse the Catalog
  • Browse Alphabetically
  • Explore Channels
  • Course Reserves
  • New Items

Need Help?

  • Search Tips
  • Ask a Librarian
  • FAQs