Parameter Identifiability of Discrete Bayesian Networks with Hidden Variables

Identifiability of parameters is an essential property for a statistical model to be useful in most settings. However, establishing parameter identifiability for Bayesian networks with hidden variables remains challenging. In the context of finite state spaces, we give algebraic arguments establishi...

Full description

Bibliographic Details
Main Authors: Allman Elizabeth S., Rhodes John A., Stanghellini Elena, Valtorta Marco
Format: Article
Language:English
Published: De Gruyter 2015-09-01
Series:Journal of Causal Inference
Subjects:
Online Access:https://doi.org/10.1515/jci-2014-0021