Parameter Identifiability of Discrete Bayesian Networks with Hidden Variables

Identifiability of parameters is an essential property for a statistical model to be useful in most settings. However, establishing parameter identifiability for Bayesian networks with hidden variables remains challenging. In the context of finite state spaces, we give algebraic arguments establishi...

Full description

Bibliographic Details
Main Authors: Allman Elizabeth S., Rhodes John A., Stanghellini Elena, Valtorta Marco
Format: Article
Language:English
Published: De Gruyter 2015-09-01
Series:Journal of Causal Inference
Subjects:
Online Access:https://doi.org/10.1515/jci-2014-0021
_version_ 1818720506041335808
author Allman Elizabeth S.
Rhodes John A.
Stanghellini Elena
Valtorta Marco
author_facet Allman Elizabeth S.
Rhodes John A.
Stanghellini Elena
Valtorta Marco
author_sort Allman Elizabeth S.
collection DOAJ
description Identifiability of parameters is an essential property for a statistical model to be useful in most settings. However, establishing parameter identifiability for Bayesian networks with hidden variables remains challenging. In the context of finite state spaces, we give algebraic arguments establishing identifiability of some special models on small directed acyclic graphs (DAGs). We also establish that, for fixed state spaces, generic identifiability of parameters depends only on the Markov equivalence class of the DAG. To illustrate the use of these results, we investigate identifiability for all binary Bayesian networks with up to five variables, one of which is hidden and parental to all observable ones. Surprisingly, some of these models have parameterizations that are generically 4-to-one, and not 2-to-one as label swapping of the hidden states would suggest. This leads to interesting conflict in interpreting causal effects.
first_indexed 2024-12-17T20:23:55Z
format Article
id doaj.art-679237fdea7b4d0abf7866d4f7fcc43d
institution Directory Open Access Journal
issn 2193-3677
2193-3685
language English
last_indexed 2024-12-17T20:23:55Z
publishDate 2015-09-01
publisher De Gruyter
record_format Article
series Journal of Causal Inference
spelling doaj.art-679237fdea7b4d0abf7866d4f7fcc43d2022-12-21T21:33:51ZengDe GruyterJournal of Causal Inference2193-36772193-36852015-09-013218920510.1515/jci-2014-0021Parameter Identifiability of Discrete Bayesian Networks with Hidden VariablesAllman Elizabeth S.0Rhodes John A.1Stanghellini Elena2Valtorta Marco3Department of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, AK, USADepartment of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, AK, USADipartimento di Economia Finanza e Statistica, Universita di Perugia, Perugia, ItalyDepartment of Computer Science and Engineering, University of South Carolina, Columbia, SC, USAIdentifiability of parameters is an essential property for a statistical model to be useful in most settings. However, establishing parameter identifiability for Bayesian networks with hidden variables remains challenging. In the context of finite state spaces, we give algebraic arguments establishing identifiability of some special models on small directed acyclic graphs (DAGs). We also establish that, for fixed state spaces, generic identifiability of parameters depends only on the Markov equivalence class of the DAG. To illustrate the use of these results, we investigate identifiability for all binary Bayesian networks with up to five variables, one of which is hidden and parental to all observable ones. Surprisingly, some of these models have parameterizations that are generically 4-to-one, and not 2-to-one as label swapping of the hidden states would suggest. This leads to interesting conflict in interpreting causal effects.https://doi.org/10.1515/jci-2014-0021parameter identifiabilitydiscrete bayesian networkhidden variables
spellingShingle Allman Elizabeth S.
Rhodes John A.
Stanghellini Elena
Valtorta Marco
Parameter Identifiability of Discrete Bayesian Networks with Hidden Variables
Journal of Causal Inference
parameter identifiability
discrete bayesian network
hidden variables
title Parameter Identifiability of Discrete Bayesian Networks with Hidden Variables
title_full Parameter Identifiability of Discrete Bayesian Networks with Hidden Variables
title_fullStr Parameter Identifiability of Discrete Bayesian Networks with Hidden Variables
title_full_unstemmed Parameter Identifiability of Discrete Bayesian Networks with Hidden Variables
title_short Parameter Identifiability of Discrete Bayesian Networks with Hidden Variables
title_sort parameter identifiability of discrete bayesian networks with hidden variables
topic parameter identifiability
discrete bayesian network
hidden variables
url https://doi.org/10.1515/jci-2014-0021
work_keys_str_mv AT allmanelizabeths parameteridentifiabilityofdiscretebayesiannetworkswithhiddenvariables
AT rhodesjohna parameteridentifiabilityofdiscretebayesiannetworkswithhiddenvariables
AT stanghellinielena parameteridentifiabilityofdiscretebayesiannetworkswithhiddenvariables
AT valtortamarco parameteridentifiabilityofdiscretebayesiannetworkswithhiddenvariables