Feature Extraction Based on the Non-Negative Matrix Factorization of Convolutional Neural Networks for Monitoring Domestic Activity With Acoustic Signals
In this paper, a feature extraction method is proposed based on the non-negative matrix factorization (NMF) for classifiers for monitoring domestic activities with acoustic signals. Most of the classifiers of the acoustic signals use data-independent spectral features (e.g., log-Mel spectrum and Mel...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9133398/ |