On Optimal Interpolation by Linear Functions on an n-Dimensional Cube

Let \(n\in{\mathbb N}\), and let \(Q_n\) be the unit cube \([0,1]^n\). By \(C(Q_n)\) we denote the space of continuous functions \(f:Q_n\to{\mathbb R}\) with the norm \(\|f\|_{C(Q_n)}:=\max\limits_{x\in Q_n}|f(x)|,\) by \(\Pi_1\left({\mathbb R}^n\right)\) --- the set of polynomials of \(n\) variable...

Full description

Bibliographic Details
Main Authors: Mikhail V. Nevskii, Alexey Yu. Ukhalov
Format: Article
Language:English
Published: Yaroslavl State University 2018-06-01
Series:Моделирование и анализ информационных систем
Subjects:
Online Access:https://www.mais-journal.ru/jour/article/view/688