On a necessary condition for $L^p$ $(0 < p < 1)$-convergence (upper boundedness) of trigonometric series
In this paper we prove that the condition $\sum_{k=\left[\frac{n}{2}\right] }^{2n}\frac{\lambda _{k}(p)}{(|n-k|+1)^{2-p}}=o(1)\, \left(=O(1) \right),$ is a necessary condition for the $L^{p} (0<p<1)$-convergence (upper boundedness) of a trigonometric series. Precisely, the results extend some...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Vasyl Stefanyk Precarpathian National University
2015-07-01
|
Series: | Karpatsʹkì Matematičnì Publìkacìï |
Subjects: | |
Online Access: | https://journals.pnu.edu.ua/index.php/cmp/article/view/1386 |