Random forest-based multi-hazard loss estimation using hypothetical data at seismic and tsunami monitoring networks

AbstractThis article presents a novel approach to estimate multi-hazard loss in a post-event situation, resulting from cascading earthquake and tsunami events with machine learning for the first time. The proposed methodology combines the power of random forest (RF) with data that are simulated at s...

תיאור מלא

מידע ביבליוגרפי
Main Authors: Yao Li, Katsuichiro Goda
פורמט: Article
שפה:English
יצא לאור: Taylor & Francis Group 2023-12-01
סדרה:Geomatics, Natural Hazards & Risk
נושאים:
גישה מקוונת:https://www.tandfonline.com/doi/10.1080/19475705.2023.2275538