Design, synthesis and anti-inflammatory activity study of lansiumamide analogues for treatment of acute lung injury

Acute lung injury (ALI) is an inflammation-mediated respiratory disease with a high mortality rate. Medications with anti-inflammatory small molecules have been demonstrated in phase I and II clinical trials to considerably reduce the ALI mortality. In this study, two series of lansiumamide analogue...

Full description

Bibliographic Details
Main Authors: Liyan Song, Gang Li, Wen Guan, Zhijun Zeng, Yanghui Ou, Tongchao Zhao, Jiayu Li, Dengqin He, Xiangxiang Fang, Yali Zhang, Jia-qiang Wu, Rongbiao Tong, Hongliang Yao
Format: Article
Language:English
Published: Elsevier 2023-10-01
Series:Biomedicine & Pharmacotherapy
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0753332223012106
Description
Summary:Acute lung injury (ALI) is an inflammation-mediated respiratory disease with a high mortality rate. Medications with anti-inflammatory small molecules have been demonstrated in phase I and II clinical trials to considerably reduce the ALI mortality. In this study, two series of lansiumamide analogues were designed, synthesized, and evaluated for anti-inflammatory activity for ALI treatment. We found that compound 8n exhibited the best anti-inflammatory activity through inhibiting LPS-induced expression of the proinflammatory cytokines interleukin-6 (IL-6) and interleukin-1β (IL-1β) in Raw264.7 cells and activating the Nrf2/HO-1 pathway. Furthermore, we discovered in a LPS-induced ALI mice model that compound 8n significantly reduced the infiltration of inflammatory cells into lung tissue to achieve the effect of protecting lung tissues and improving ALI. Additionally, our mice model study revealed that compound 8n had a good expectorant effect. These results consistently support that lansiumamide analogue 8n represents a new class of anti-inflammatory agents with potential as a lead compound for further development into a therapeutic drug for ALI treatment.
ISSN:0753-3322