National high-resolution cropland classification of Japan with agricultural census information and multi-temporal multi-modality datasets
Multi-modality datasets offer advantages for processing frameworks with complementary information, particularly for large-scale cropland mapping. Extensive training datasets are required to train machine learning algorithms, which can be challenging to obtain. To alleviate the limitations, we extrac...
المؤلفون الرئيسيون: | Junshi Xia, Naoto Yokoya, Bruno Adriano, Keiichiro Kanemoto |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Elsevier
2023-03-01
|
سلاسل: | International Journal of Applied Earth Observations and Geoinformation |
الموضوعات: | |
الوصول للمادة أونلاين: | http://www.sciencedirect.com/science/article/pii/S1569843223000158 |
مواد مشابهة
-
Multi-Modal Spatio-Temporal Knowledge Graph of Ship Management
حسب: Yitao Zhang, وآخرون
منشور في: (2023-08-01) -
Vegetation Land Segmentation with Multi-Modal and Multi-Temporal Remote Sensing Images: A Temporal Learning Approach and a New Dataset
حسب: Fang Qu, وآخرون
منشور في: (2023-12-01) -
Multi-Modal and Multi-Temporal Data Fusion: Outcome of the 2012 GRSS Data Fusion Contest
حسب: Christian Berger, وآخرون
منشور في: (2013-01-01) -
Extraction of cropland field parcels with high resolution remote sensing using multi-task learning
حسب: Leilei Xu, وآخرون
منشور في: (2023-12-01) -
Single-Stage Extensive Semantic Fusion for multi-modal sarcasm detection
حسب: Hong Fang, وآخرون
منشور في: (2024-07-01)